Note

High-performance liquid chromatographic enantioseparation of intermediates relating to the total synthesis of (-)-physostigmine

THOMAS B. K. LEE and GEORGE S. K. WONG*

Chemical Research Department, Hoechst-Roussel Pharmaceuticals Inc., Somerville, NJ 08876 (U.S.A.) (Received July 31st, 1990)

(-)-Physostigmine (1) is a clinically useful anticholinesterase agent which has been used in the treatment of myasthenia gravis and glaucoma. More recently, selected (-)-physostigmine analogues have also shown promise as Alzheimer's disease therapeutic agents. Our interests in new (-)-physostigmine analogues have led us to develop a stereoselective synthesis of (-)-physostigmine [1] (Fig. 1). To facilitate our synthetic effort and to ensure a high optical purity of the synthetic material, we required analytical high-performance liquid chromatographic (HPLC) enantioseparation of the intermediates as shown in the scheme. We report herein the application of derivatized cellulose-based chiral stationary phase (CSP) to the separation of these intermediates.

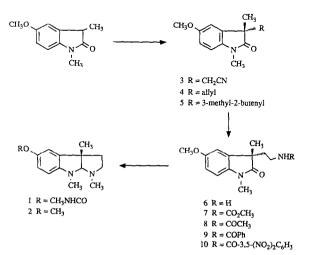


Fig. 1. Stereoselective synthesis of (-)-physostigmine. Ph = Phenyl.

EXPERIMENTAL

Apparatus

The chromatography was performed with a M-6000A pump (Waters Assoc., Milford, MA, U.S.A.), a SF 769 variable-wavelength detector (Kratos, Ramsey, NJ, U.S.A.), and a 3390 integrator (Hewlett-Packard, Palo Alto, CA, U.S.A.).

The prepacked columns used were Daicel Chiracel OD and OJ columns (25 cm \times 4.6 mm I.D.) and were purchased from Daicel Chemical Industries.

Materials

Racemic forms of compounds 1–10 were prepared according to literature procedures [1,2]. HPLC-grade hexanes and 2-propanol were purchased from Fisher Scientific (Pittsburgh, PA, U.S.A.).

RESULTS AND DISCUSSIONS

The results and the conditions for the chromatographic separation of the intermediates on Chiralcel OD/OJ columns are presented in Tables I–III. Complete resolution can be observed for (\pm) -oxindoles 3–5 and (\pm) -esermethole (2). Attempts to separate (\pm) -amine 6 directly on a Crownpak CR(+) column (Daicel) have not been completely successful. Since (\pm) -amine 6 cannot be assayed directly on these Chiralcel columns, it is therefore derivatised as carbamate 7, or as amides 8–10 before being analysed. Of these, only the carbamate 7 and the dinitro substituted benzoyl amide 10 can be resolved. It is also interesting to note that the resolution of (\pm) -physostigmine (1) and amide 10 is improved when isopropanol is replaced by ethanol as the solvent modifier.

The mechanism responsible for the separation is complex and is probably due to a combination of hydrogen bonding, and dipole-dipole interaction of the sub-

TABLE I

HPLC SEPARATION OF (\pm)-PHYSOSTIGMINE AND (\pm)-ESERMETHOLE ON CHIRALCEL COLUMNS

RO
$$CH_3$$
 1 R = CH₃NHCO 2 R = CH₃

Mobile phases: A = isopropanol-hexane (5:95); B = ethanol-hexane (3:97); C = isopropanol-hexane (2:98). α = Separation factor; R_s = resolution factor.

Compound	Column	Mobile phase	Flow-rate (ml/min)	α	R_s	Less polar enantiomer
1	OD	A	0.5	1.11	< 0.7	S
1	Ol	Α	0.8	1.12	0.95	S
1	OJ	В	1.0	1.14	1,28	S
2	OD	C	0.6	1.36	< 0.7	_
2	Ol	Α	0.6	1.41	2.36	S

TABLE II HPLC SEPARATION OF (\pm) -OXINDOLES ON CHIRALCEL COLUMNS

Mobile phases: A = isopropanol-hexane (10:90); B = isopropanol-hexane (1:99); C = isopropanol-hexane (2:98). α = Separation factor; R_s = resolution factor.

Compound	Column	Mobile phase	Flow-rate (ml/min)	α	R_s	Less polar enantiomer
3	OD	A	1.0	1.32	3.32	R
3	OJ	Α	1.0	1.04	< 0.6	-
4	OD	В	0.7	1.0	< 0.4	-
4	OJ	\boldsymbol{C}	0.6	1.17	1.57	R
5	OJ	Α	0.5	1.66	2.43	R

strates with the chiral stationary phases. Additional π - π interaction of the phenyl moeity of the substrate with that of the CSP may also be important for chiral recognition [3,4].

CONCLUSION

Both the Chiralcel OD and OJ columns are well suited for the analytical separation of chiral oxindoles. We have shown that by a proper choice of the CSP, enantiomers of all critical intermediates in the synthesis of (-)-physostigmine can be

TABLE III

HPLC SEPARATION OF (\pm) -1,3-DIMETHYL-5-METHOXYOXINDOLYLETHYLAMINE DERIVATIVES ON CHIRALCEL COLUMNS

$$\begin{array}{cccc} CH_3 & 6 = H \\ 7 = CO_2CH_3 & 8 = COCH_3 & 9 = COPh \\ CH_3 & 10 = CO-3,5-(NO_2)_2C_6H_3 & 10 = CO-3,5-(NO_2)_2C_5H_3 & 10$$

Mobile phases: A = isopropanol-hexane (10:90); B = isopropanol-hexane (15:85); C = isopropanol-hexane (20:80); D = ethanol-hexane (10:90). α = Separation factor; R_x = resolution factor.

Compound	Column	Mobile phase	Flow-rate (ml/min)	α	R_s	Less polar enantiomer
7	OD	A	1.0	1.90	2.24	R
7	OJ	Α	0.6	1.08	0.87	R
8	OD	В	1.0	1.00	< 0.4	_
9	OD	A	1.0	1.00	< 0.4	-
9	OJ	Α	1.0	1.00	< 0.4	_
10	OD	C	0.8	1.32	1.03	S
10	OD	D	1.5	1.41	3.84	S

320 NOTES

separated. This chiral HPLC method will facilitate our synthetic efforts and unambiguous determination of the optical purity of the synthetic material.

REFERENCES

- 1 T. B. K. Lee and G. S. K. Wong, J. Org. Chem., (1990) in press.
- 2 P. L. Julian and J. Pikl, J. Am. Chem. Soc., 57, (1935) 563.
- 3 Y. Okamoto, M. Kawashima and K. Hatada, J. Chromatogr., 363 (1986) 173.
- 4 Y. Okamoto, R. Aburatani and K. Hatada, J. Chromatogr., 389 (1987) 95.